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1 Generic synthesis procedures

1.1 Normal Method

A common approach for generating imputations for continuous variables is to model the
posterior distribution using a normal linear regression model, possibly on transformed data.
Given the highly skewed nature of payroll and employment data in the LBD, the kernel den-
sity estimation procedure of Abowd and Woodcock (2004) is used to transform the response
variables so that marginally they approximately follow standard normal distributions, and
a normal model can be used.

Using the normal approach with a KDE transform, a synthetic variable ỹ
(i)
k is generated

from (X, y1, . . . , yk−1, ỹ1, . . . , ỹk−1) by drawing from the posterior predictive distribution of
yk as follows:

1. Apply the KDE transform to the response variable and any needed tranformation
functions to the predictors to satisfy approximately linear regression assumptions. For
simplicity, the tranformations performed on the predictors are not notated here, though
the models used are given in Section 5.1.2. When the KDE transforms were applied to
the linear predictors, the observed-data correlations were not preserved in the synthetic
data.

For each observed value yk,l, l = 1, . . . , n, of response variable yk, the transformed values

y∗k,l are computed as Φ−1(K̂(yk,l)), where Φ denotes the standard normal cumulative

distribution function and K̂(yk,l) is a kernel density estimate of yk,l.
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2. Fit a linear model, f(y∗k|Z, β, σ2) = N(Zβ, σ2) to the observed data, where Z =
(X, y1, . . . , yk−1), and obtain estimates of β and σ2.

3. For each imputation, draw new values σ̃2(i) and β̃(i) from the posterior distributions
f(σ2|X, Y ) and f(β|σ2, Y,X).

4. Draw ỹ
(i)∗
k from N(Z̃(i)β̃(i), σ̃2(i)), where Z̃(i) = (X, ỹ1, . . . , ỹk−1).

5. Apply the inverse KDE transform, ỹ
(i)
k,l = K̂−1(Φ(ỹ

(i)∗
k,l )), to return to the original scale

of yk.

Step 3 can be considered optional for census data as the parameters are considered to be
known and can be computed from the data. Including this step can potentially reduce dis-
closure risks by increasing between-imputation variance. For speed and simplicity, this step
is omitted in the imputation of the LBD. Disclosure risks are still limited by the smoothing
in Step 2 and the random draws in Step 4. Similarly, the transformation function applied
depends on the data, and thus contains uncertainty when imputing random samples; hence,
Abowd and Woodcock (2004) draw a Bayesian bootstrap sample to estimate the transfor-
mation in each implicate to account for this additional uncertainty. This step is also skipped
in the synthesis of the LBD.

1.2 Nonnormal Models

The normal approach can be modified for nonlinear models by replacing the normal model
with a nonlinear one. For binary and categorical responses without very many categories,
one can sample from binomial and multinomial distributions, using appropriate generalized
linear models to obtain the sampling probabilities.

The synthetic variable ỹk for binary response yk is generated by approximating draws
from f(yk|X, y1, . . . , yk−1, ỹ1, . . . , ỹk−1) as follows:

1. Use the observed data to fit a logistic model, logit(p(yk = 1)) = Zβ, where Z =
(X, y1, . . . , yk−1), to obtain p̂l(Zl), l = 1, . . . , N .

2. Update model parameters by taking draws from their posterior distributions. As be-
fore, this step is omitted in the LBD synthesis.

3. Use the observed data model to obtain p̂l(Z
(i)
l ), where Z

(i)
l = (Xl, ỹ

(i)
1,l , . . . , ỹ

(i)
k−1,l).
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4. Obtain ỹ
(i)
k by sampling from Bin(1, p̂l(Z̃

(i)
l )), l = 1, . . . , N .

For categorical responses, the same approach can be used, with a generalized logit model used
in place of the logistic model to obtain the posterior probabilities, p̂lj(xl, y1,l, . . . , yk−1,l), l =
1, . . . , n;j = 1, . . . , c, where c is the number of categories in the response. A multinomial
distribution is used in place of the binomial.

1.3 Dirichlet-multinomial method

When there are many categories in the response, and many categorical predictors, the gener-
alized logit model can become computationally infeasible. The simpler and faster Dirichlet-
multinomial approach provides a convenient framework for sampling from the posterior pre-
dictive distribution for a categorical yk when the predictors in X, y1, . . . , yk−1 are categorical.

Let c be the number of categories in the response yk. Let l be the number of unique
categories determined by the predictors in X, y1, . . . , yk−1. Assuming a flat prior on the cell
probabilities, ỹk is generated as follows:

1. Use the observed data to determine the cell counts nj = (n1
j , . . . , n

c
j), j = 1, . . . , l.

2. Draw new values of the cell probabilities pj = (p1j , . . . , p
c
j) from a Dirichlet(nj).

3. For each unit in the synthetic data, look up the appropriate cell probabilities pj based
on the values of X and ỹ1, . . . , ỹk.

4. Sample from a multinomial distribution with cell probabilities pj.

As in the previous methods, we skip Step 2. In Step 3, if an exact cell match is not
found in the observed data, a possibility depending on the disclosure control applied to
y1, . . . , yk−1, then the cell is collapsed untill a match is found. Hence, in Step 1, cell counts
must be determined for one or more sets of broader categories as well.

This approach is very fast computationally and appears to yield good predictions with
sufficient disclosure control when used in the LBD synthesis. With sufficient variability in
the observed data, disclosure control is provided by sampling from the multinomial distri-
bution and by the disclosure control methods applied to any predictors. In some cases, this
method can fail to provide sufficient disclosure protection. When there are a large number
of categories and categorical variables, numerous units are uniquely determined by their
values of the categorical predictors, yielding predictions that are “too good.” For example,
let C be a unique category determined by categorical predictors in X and let yC be the
observed values of a categorical response variable corresponding to the nC units in C. If
nC = 1, or yCi, i = 1, . . . , nC all have the same value, then a categorical model will impute
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synthetic values ỹC for yC such that ỹC = yC in each implicate. This creates a high risk of
re-identification of yC .

Disclosure control in this case is improved by using an informative prior distribution to
add a positive probability that, for a given category C, the ỹC generated may contain values
not present in yC . The prior is estimated by replacing one of the categorical predictors with
a coarsened version and using this to determine the prior cell counts. For example, if County
is a predictor, the prior could be obtained from state-level cell counts. The prior counts
are normalized to represent a small number of units to reduce the sensitivity to the prior;
however these can be scaled to increase the noise if desired. This serves to add noise in a
controlled fashion, meeting the goal of reducing disclosure risks with minimal loss of utility.

Let c be the number of categories in the response y1. Let l be the number of unique
categories determined by the predictors in X and let p be the number of unique categories in
a coarsened version of X, Xp, i.e., with one or more of the predictors dropped or coarsened,
so that l > p and Xp has fewer categories than X and larger cell counts. Generate draws
from f(y1|X) as follows:

1. Using the observed data, determine the cell counts nk = (n1
k, . . . , n

c
k), k = 1, . . . , p.

Normalize these cell counts so that
∑p

i=1 n
i
k = a, where a is a small number. Larger

values will give more weight to the prior.

2. Using the observed data, determine the cell counts nj = (n1
j , . . . , n

c
j), j = 1, . . . , l.

Add each nj to its corresponding normalized nk to obtain the posterior counts mj, j =
1, . . . , l.

3. Draw new values of the cell probabilities pj = (p1j , . . . , p
c
j) from a Dirichlet(mj =

(m1
j , . . . ,m

c
j)).

4. For each unit in the synthetic data, look up the appropriate cell probabilities pj based
on the values of X.

5. Sample from a multinomial distribution with cell probabilities pj.

As before, for the LBD, we omit drawing parameters in Step 3, and sample from a
multinomial distribution with cell probabilities given by mj/

∑c
i=1m

i
j.

2 Unit information prior

The normal method is modified for small subgroups by incorporating an informative prior for
the vector of regression coefficients β. For a given 3-digit SIC group, a comparable subgroup
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is found in the corresponding 2-digit SIC group, which is used to estimate the prior, and 4-
digit SIC is dropped from the imputation model. For example, if there are too few single-unit
nonzero births in a given year in the 3-digit SIC group being imputed, the prior is estimated
from all single-unit nonzero births in the same year from the corresponding 2-digit SIC group.
This is analogous to the common practice of using information from previous experiments,
external surveys, and censuses to determine prior values.

Using a unit information prior allows for all of the available data to be used to estimate
a prior mean and variance for the regression coefficient without overwhelming the data. The
unit information prior has the same amount of information about β as contained in a single
observation. In this case the information is in the sample used to estimate the prior, which
has the form

p(β|σ2) = N(β0, σ
2Σ0)

p(σ2) = χ−2(n0 − k, s20)

where β0 = (X ′0X0)
−1X ′0Y0, Σ0 = n0(X

′
0X0)

−1, X0 and Y0 are the prior data for X and Y ,
s20 is the sample variance (Y0 −X0β0)

′(Y0 −X0β0)/(n0 − k), and n0 is the prior data sample
size.

The resulting posterior (β, σ2|Y,X), used to draw from the posterior predictive distribu-
tion, is given by

p(β|σ2, Y,X) = N(β̂, Σ̂)

p(σ2|Y,X) = χ−2(n+ n0 − k, s2)

where β̂ = Σ̂(Σ−10 β0 + X ′Y ), Σ̂ = (Σ−10 + X ′X)−1, and s2 = {(n0 − k)s20 + (y − Xβ̂)′(y −
Xβ̂) + (β̂ − β0)Σ−10 (β̂ − β0)}/(n+ n0 − k).

When n0 ≥ k, this gives a full-rank model for drawing from the posterior predictive
distribution under an informative prior. In addition to providing a full-rank model for small
subgroups where n < k, this provides a degree of disclosure protection by using information
from external data to build the model. If additional noise is desired, more weight can be
given to the prior by replacing n0 in the prior specification with np < n0. If n0 < k, predictors
may be dropped to obtain a full-rank model, or the group used to estimate the prior may
be expanded.
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